

(C)

NaOCl and $\operatorname{Ca(ClO_3)}_2$

Date Planned ://_				Dail	y Tutori	al Sheet-5	Expected Duration : 90 Min			
Actual Date of Attempt://_				JEE	JEE Main (Archive)			Exact Duration :		
61.	In Xe	In XeO_3F_2 , the number of bond pair(s), π - bond(s) and lone pair(s) on Xe atom respectively are : (2)								
	(A)	4, 2, 2	(B)	4, 4, 2	(C)	5, 2, 0	(D)	5, 3, 0	\odot	
62 .	The co	orrect order of el	lectron a	ffinity is :					(2018)	
	(A)	Cl > F > O	(B)	F>O>Cl	(C)	F>Cl>O	(D)	O > F > C	1	
63 .	Amon	Among the oxides of nitrogen: N_2O_3 , N_2O_4 and N_2O_5 ; the molecule(s) having nitrogen-nitrogen								
	is/are					(:				
	(A)	N ₂ O ₃ and N ₂		(B)	N_2O_4 and N_2O_5					
	(C)	N ₂ O ₃ and N ₂	_		(D)	only N ₂ O ₅				
64.		_		occur in the atm	-		(D)	Des	(2019)	
~ =	(A)	Kr	(B)	Ne	(C)	Не	(D)	Rn	(2019)	
65 .	(A)	HF has highest boiling point among hydrog (A) strongest hydrogen bonding				because it has: (20 lowest ionic character				
	(C)		_	l's interactions	(B) (D)	lowest dissoc				
66.	The co	orrect order of the oxidation states of nitrogen in NO, N_2O , NO_2 and N_2O_3 is :						(2019)		
	(A)	$\mathrm{NO}_2\!<\mathrm{NO}<\mathrm{N}_2\mathrm{O}_3<\mathrm{N}_2\mathrm{O}$			(B)	$\mathrm{N_2O} < \mathrm{N_2O_3}$	$\mathrm{N_2O} < \mathrm{N_2O_3} < \mathrm{NO} < \mathrm{NO_2}$			
	(C)	$N_2O < NO < N$	$N_2O_3 < N$	O_2	(D)	$NO_2 < N_2O_3$	< NO < N	₂ O		
67.	Good	reducing nature of H_3PO_2 is attributed Two P – OH bonds			to the p	presence of :		(2019)		
	(A)				(B)	One P-H be	ond			
	(C)	One P-OH b	oond		(D)	Two P-H be	onds			
68.	The pa	he pair that contains two P-H bond						(2019)		
	(A)	$H_4P_2O_5$ and I	0 0		(B)	H_3PO_3 and	_			
	(C)	$H_4P_2O_5$ and I	$H_4P_2O_6$		(D)	H_3PO_2 and	$H_4P_2O_5$			
69 .		Chlorine on reaction with hot and concentrated sodium hydroxide gives :						(2019)		
	(A) (Cl ⁻ and ClO ₃	(C) (ClO_3^- and ClO_2^-	(C)	Cl ⁻ and ClO ⁻	(D)	Cl ⁻ and C	$^{-}_{2}$	
70.	Iodine	reacts with cor	ncentrate	ed HNO ₃ to yield	d Y alor	ng with other pro	ducts. Th	ne oxidation	state of iodine	
	in Y, i		(D)	7	(0)	0	(T)	1	(2019)	
	(A)	5	(B)	7	(C)	3	(D)	1	()	
71.	In the	In the following reactions, products (A) and (B), respectively, are: $ \frac{\text{NaOH}}{\text{(hot and conc.)}} + \text{Cl}_2 \rightarrow \text{(A)} + \text{side products} $								
					•					
		Ca(OH) ₂ +Cl ₂ (dry)	→ (R)+	side products						
	(A)	NaClO_3 and	Ca(ClO ₃	$)_2$	(B)	NaClO_3 and	Ca(OCl)	2		

(D)

NaOCl and $Ca(OCl)_2$

72.	White	White phosphorus on reaction with concentrated NaOH solution in an inert atmosphere of CO ₂ gives										
	phosphine and compound (X). X on acidification with HCl gives compound (Y). The basicity of compound											
	(Y) is:								(2020)			
	(A)	2	(B)	4	(C)	1	(D)	3				
73 .	A met	al (A) on hea	ting in nitro	ogen gas give	en compoun	d B. B on tre	eatment wi	th H ₂ O g	gives a colourless			
	gas which when passed through ${\rm CuSO}_4$ solution gives a dark blue-violet coloured solution. A and B											
	respec	(2020)										
	(A)	Na and Na	₃ N		(B)	Mg and Mg	$(NO_3)_2$					
	(C)	Na and Na	NO_3		(D)	Mg and Mg	g_3N_2					
74.	The acidic, basic and amphoteric oxides, respectively, are:											
	(A)	MgO,Cl ₂ O,	Al_2O_3		(B)	Cl ₂ O, CaO,	$P_{4}O_{10}$					
	(C)	$\mathrm{N_2O_3,Li_2O}$	$\rm Al_2O_3$		(D)	$\mathrm{Na_2O},\mathrm{SO_3}$	$, \mathrm{Al_2O_3}$					
75.	Chlori	Chlorine reacts with hot and concentrated NaOH and produces compounds (X) and (Y). Compound (X)										
	gives v	gives white precipitate with silver nitrate solution. The average bond order between Cl and O atoms in (Y										
	is											
76.	The number of bonds between sulphur and oxygen atoms in $S_2O_8^{2-}$ and the number of bonds between											
	sulphi	sulphur and sulphur atoms in rhombic sulphur, respectively, are : (2020)										
	(A)	4 and 8	(B)	4 and 6	(C)	8 and 6	(D)	8 and	8			